

Available online at www.sciencedirect.com



Tetrahedron Letters 47 (2006) 719-722

Tetrahedron Letters

## Solid-phase synthesis of terminal oligonucleotide-phosphoramidate conjugates

Leonie A. Cooke,<sup>a</sup> Christian Frauendorf,<sup>a,†</sup> Manuela A. Gîlea,<sup>a</sup> Stephen C. Holmes<sup>b</sup> and Joseph S. Vyle<sup>a,\*</sup>

<sup>a</sup>School of Chemistry and Chemical Engineering, The Queen's University of Belfast, David Keir Building, Stranmillis Road, Belfast BT9 5AG, UK

<sup>b</sup>Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK

Received 20 October 2005; revised 18 November 2005; accepted 21 November 2005 Available online 6 December 2005

Abstract—A novel phosphoramidite, *N*,*N*-diisopropylamino-2-cyanoethyl-9-anthracenemethyl phosphoramidite 1, was prepared and coupled with the terminal 5'-hydroxyl of support-bound  $T_{10}$  and the putative phosphite triester intermediate was subsequently reacted with iodine in the presence of either water or a series of primary and secondary amines. The reactivity of 1 compared to a previously reported benzyl phosphoramidite 2 was also investigated: oxidation of the product of coupling 2 with CPG- $T_{10}$ -5'OH under aqueous conditions resulted in greater than 30% of the benzyl moiety being retained. In contrast, essentially complete loss of the 9-anthracenemethyl group was observed using 1 under the same conditions. Oligonucleotides modified with a terminal phosphate monoester, lipophilic, fluorescent or cationic groups were thus prepared. © 2005 Elsevier Ltd. All rights reserved.

Oligonucleotide conjugates incorporating cell targeting/ delivery agents, reporter groups, capture tags or nuclease resistant moieties at the 3'- or 5'-termini are currently widely prepared.<sup>1</sup> The utility of such conjugates can often be optimised using 'programmable linkers', the properties of which respond to environmental changes. This technology is well established for chemical- or light-cleavable linkers applied to affinity purification.<sup>2</sup> More recently, acid-cleavable linkers such as phosphoramidates have been utilised for the in vivo delivery of oligonucleotide–PEG conjugates.<sup>3</sup> Within 5 h at the endosomal pH (4.7), complete cleavage of a phosphoramidate linking an antisense oligonucleotide and a PEG group was observed.

*Inter*nucleotide phosphoramidate linkages and also mononucleoside phosphoramidate prodrugs have been installed via a diverse range of solid-phase chemistries.<sup>4</sup>

In contrast, few developments in the solid-phase preparation of oligonucleotides bearing *terminal* phosphoramidates have been reported following descriptions of efficient solution-phase methods in the 1980s.<sup>5</sup> Solid-phase methods, which have been reported typically involve reactions of phosphate monoesters, phosphoimi-dazolides or *H*-phosphonates rather than phosphites.<sup>6</sup> Vasseur and co-workers have recently described<sup>7</sup> a simple route to *H*-phosphonates using a 4-methoxy-benzyl phosphoramidite first reported by Li et al.<sup>8</sup> Using a related *ortho*-methylbenzyl phosphoramidite, we sought to exploit the reactivity of the corresponding phosphite triester derivatives<sup>9</sup> for the preparation of



Figure 1. Phosphoramidites utilised in this study.

*Keywords*: Solid-phase synthesis; Nucleic acids; Arbuzov reactions; Phosphoramidate.

<sup>\*</sup> Corresponding author. Tel.: +44 (0)28 9097 5485; fax: +44 (0)28 9097 4890; e-mail: j.vyle@qub.ac.uk

<sup>&</sup>lt;sup>†</sup>Present address: Chemical Synthesis Service, Segoe Industrial Estate, Craigavon BT63 5QD, UK.

<sup>0040-4039/\$ -</sup> see front matter @ 2005 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2005.11.098



Scheme 1. Reagents and conditions: (i) 0.1 M 1 or 2 0.2 M 5-benzylthiotetrazole or 0.45 M tetrazole, MeCN; (ii) oxidation—see Table 1 for conditions; (iii) deprotection via A: 40% MeNH<sub>2</sub> (aq), 65 °C, 30 min (7a–f); or B: (a) 10 % (v/v) Et<sub>3</sub>N, 1:1 bistrimethylsilylacetamide/anhydrous pyridine, rt, 10 min; (b) 30% NH<sub>3</sub> (aq), rt, 30 min (7g).

phosphorothiolate-derived oligonucleotides.<sup>10</sup> However, the instability of the phosphoramidite and the intermediate phosphite triesters led us to seek more stable aryl methyl-derivatives for the preparation of terminal oligonucleotide–phosphoramidate conjugates.

Phosphoramidite derivatives of 9-anthracenemethanol (1: Fig. 1) or benzyl alcohol<sup>11</sup>  $\mathbf{2}$  were prepared and isolated without chromatography using the methodology developed in this laboratory and since used by others.<sup>10,12</sup>

Thus, a 0.1 M solution of either 9-anthracenylmethanol or benzyl alcohol and Hünigs base (4.1 equiv) in anhydrous DCM was stirred during addition of N,Ndiisopropylamino-2-cyanoethylchlorophosphoramidite (1.2 equiv) and the reaction stirred at room temperature for 30 min. Excess phosphitylating reagent was quenched following addition of solid-supported benzyl alcohol and agitation for a further 30 min under ambient conditions. Compounds 1 and 2 were isolated in good yield (>80%) and high purity (>90%) following treatment with activated basic alumina.<sup>‡</sup> A solution of **2** in acetonitrile (0.1 M) was found to be stable for over 1 month at room temperature in the presence of Molecular Traps<sup>TM</sup>. The same solution of **1** was used within 1 week of its preparation.

Coupling of 1 or 2 to the 5'-hydroxyl of CPG-supported  $T_{10}$  3 was performed under standard conditions (Scheme 1). The putative phosphite triester intermediates (4 or 5) were subsequently oxidised under standard conditions using 50 mM I<sub>2</sub> in 8/1/1 THF/pyridine/H<sub>2</sub>O. We anticipated conversion to the corresponding cyanoethyl-protected phosphate diester **6a** with complete loss of the benzyl protecting group from **4** as has previously been observed for the *o*-methylbenzyl moiety.<sup>13</sup> However, fol-

<sup>&</sup>lt;sup>‡</sup>Compound **1a**:  $\delta_{\rm H}$  (300.0 MHz, CD<sub>3</sub>CN) 1.15–1.25 (12H, m, 2×(CH<sub>3</sub>)<sub>2</sub>CH), 2.45 (2H, 2×t <sup>3</sup>J<sub>HH</sub> 6.6 Hz, CH<sub>2</sub>CN), 3.65 (2H, m, 2×CH), 3.72 (2H, m, OCH<sub>2</sub>CH<sub>2</sub>), 5.58–5.75 (2H, 2×m, CH<sub>2</sub>OAr), 7.44–7.59 (4H, m, H2, H7, H3, H6), 8.01 (2H, s, H4, H5), 8.41 (2H, d <sup>3</sup>J<sub>HH</sub> 8.7 Hz, H1, H8), 8.46 (1H, s, H10);  $\delta_{\rm P-31}$  (121.5 MHz, CD<sub>3</sub>CN) 147.33; MS-ES, 409.1 (M+H), 431.1 (M+Na); mp 59.7–60.1 °C.

Table 1. Coupling and directed-Arbuzov reactions performed using aryl methyl phosphoramidites 1 and 2

| Phosphoramidite | Oxidation conditions                                                                                                                                                  | Deprotection conditions | Product and<br>characterisation<br>MALDI-MS m/z<br>Calculated |                                          | C18-HPLC<br>rt/min<br>(gradient) <sup>a</sup> | Yield/% $(A^{260 \text{ nm}})$ |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------------------------------------------------------------|------------------------------------------|-----------------------------------------------|--------------------------------|
| 1               | I <sub>2</sub> (0.05 M)/THF/H <sub>2</sub> O/pyridine (8/1/1)                                                                                                         | А                       | 7a                                                            | 3065.38<br><i>3058.47</i>                | 20.59 (1)                                     | 98                             |
| 2               | I <sub>2</sub> (0.05 M)/THF/H <sub>2</sub> O/pyridine (8/1/1)                                                                                                         | А                       | 7a<br>7b                                                      | (see above)<br>3155.84<br><i>3148.52</i> | 22.45 (1)                                     | <70<br>>30                     |
| 1/2             | $C_{12}H_{25}NH_2 (0.5 \text{ M})/I_2 (0.1 \text{ M})/THF (0.5 \text{ mL})$                                                                                           | А                       | 7c                                                            | 3226.37<br><i>3225.67</i>                | 41.17 (1)                                     | 86                             |
| 1/2             | DansylNH(CH <sub>2</sub> ) <sub>5</sub> NH <sub>2</sub> (0.5 M)/I <sub>2</sub> (0.1 M)/THF (0.5 mL)                                                                   | А                       | 7d                                                            | 3377.45<br><i>3375.63</i>                | 20.03 (2)                                     | 76                             |
| 1               | (MMTrHNCH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> ) <sub>2</sub> N(CH <sub>2</sub> ) <sub>2</sub> NH <sub>2</sub> (0.5 M)/I <sub>2</sub><br>(0.1 M)/THF (0.5 mL) | Detritylation<br>then A | 7e                                                            | 3185.79 <sup>b</sup><br><i>3186.61</i>   | 18.59 (1)                                     | 93                             |
| 1               | $H_2N(CH_2)_8NH_2 (0.5 \text{ M})/I_2 (0.1 \text{ M})/DCM (0.5 \text{ mL})$                                                                                           | А                       | 7f                                                            | 3187.33<br><i>3184.62</i>                | 19.89 (1)                                     | 71                             |
| 1               | $O(CH_2)_2NH (0.5 M)/I_2 (0.1 M)/THF (0.5 mL)$                                                                                                                        | В                       | 7g                                                            | 3136.38<br><i>3127.53</i>                | 21.52 (1)                                     | 83                             |

<sup>a</sup> HPLC; Monitoring at 260 nm. Column: RP-C18, 5 μm, 250 × 4.6 mm. Flow rate: 1 mL min<sup>-1</sup>. Buffer A: 0.1 M TEAA, 5% MeCN, pH 6.5; Buffer B: 0.1 M TEAA, 65% MeCN, pH 7. Gradient 1: 0 min, 0% B; 5 min, 0% B; 35 min, 50% B; 38 min, 100% B; 43 min, 100% B; 50 min, 0% B; 55 min, 0% B. Gradient 2: 0 min, 25% B; 5 min, 25% B; 20 min, 45% B, 25 min, 25% B, 35 min, 25% B.

<sup>b</sup>Cyanoethylated material is also observed—observed 3231.46; *calculated 3239.64*.

lowing deprotection in 40% aqueous methylamine, RP-HPLC and MALDI-MS analysis of the products showed only 70% loss of the benzyl group to 7a with the benzyl-protected phosphate diester 7b being the only other product (Table 1). In contrast, greater than 98% loss of the anthracene-methyl function from 5 was observed under the same conditions and the 5'-phosphate monoester was formed cleanly following deprotection.

Several phosphoramidate derivatives of primary and secondary amines were also prepared using a standard protocol: the synthesis cycle was interrupted immediately following the coupling step; the support washed with anhydrous acetonitrile, and the phosphite triester intermediates 4 or 5 treated with 100 mM I<sub>2</sub> in the presence of 0.5 M amine. Reduced yields of the phosphoramidates were generally obtained using lower amine concentrations or in the presence of DMF. Removal of the 2-cyanoethyl moieties from decamers bearing terminal phosphoramidates derived from primary amines (6c-f) and their simultaneous cleavage from the support was effected using standard conditions. Attempted deprotection of the 5'-morpholidate-terminated oligomer 6g using these conditions gave rise principally to the phosphate monoester 7a. We therefore adapted the procedure of Ohkubo et al.14 to effect initial decyanoethylation using a tertiary amine prior to removal from the support.

Analysis of the crude products following deprotection was performed using RP-HPLC. Characterisation was either by MALDI-MS or by coinjection with standards. In addition to the desired product, two major sideproducts were observed: **7a** and an oligonucleotide conjugate, which we tentatively assign to the 9-anthracenemethyl phosphate diester based upon its UV-absorption profile. Due to the large absorbance of the anthracenyl moiety, the levels of the side-product are over-estimated using absorbance at 260 nm.

In conclusion, we have prepared a novel phosphoramidite and demonstrated its utility for the rapid derivatisation of support-bound oligomers using standard phosphoramidite methodology. Decathymidylates bearing 5'-phosphoramidate-linked lipophilic, fluorescent and cationic moieties were thus prepared in a fashion amenable to split-bead, parallel synthesis of nucleic acid analogues. This will thereby directly complement methodologies developed in the laboratories of Richert and Gait for the solid-phase functionalisation of modified bases or sugars.<sup>15</sup> During the preparation of this manuscript Fabio and co-workers described the preparation of highly pure 5'- and 3'-labelled decanucleotides including phosphoramidates on solid support via phosphate triester methodology;<sup>16</sup> we believe that the novel phosphoramidite methodology described here provides access to a greater diversity of phosphate diester analogues.

## Acknowledgements

This work has been supported by a Marie Curie Training Fellowship to M.A.G., a European Social Fund grant to L.A.C. and by the School of Chemistry, QUB. We wish to thank Professor Jerry Davies, QUB for help with DNA synthesis.

## Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.tetlet. 2005.11.098.

## **References and notes**

- 1. Virta, P.; Katajisto, J.; Niittymaki, T.; Lonnberg, H. *Tetrahedron* 2003, *59*, 5137–5174.
- Olejnik, J.; KrzymanskaOlejnik, E.; Rothschild, K. J. Nucleic Acids Res. 1996, 24, 361–366; Shimkus, M.; Levy, J.; Herman, T. Proc. Natl. Acad. Sci. U.S.A. 1985, 82, 2593–2597.
- Jeong, J. H.; Kim, S. W.; Park, T. G. Bioconjugate Chem. 2003, 14, 473–479; Oishi, M.; Nagatsugi, F.; Sasaki, S.; Nagasaki, Y.; Kataoka, K. Chembiochem 2005, 6, 718–725.
- Schultz, C. Bioorg. Med. Chem. 2003, 11, 885–898; Gryaznov, S.; Chen, J. K. J. Am. Chem. Soc. 1994, 116, 3143–3144 (and references cited therein).
- Hayakawa, Y.; Wakabayashi, S.; Nobori, T.; Noyori, R. *Tetrahedron Lett.* 1987, 28, 2259–2262; Chu, B. C. F.; Wahl, G. M.; Orgel, L. E. *Nucleic Acids Res.* 1983, 11, 6513–6529.
- Felder, E. R. Nucleosides Nucleotides 1991, 10, 495–496; Kadokura, M.; Wada, T.; Seio, K.; Moriguchi, T.; Huber, J.; Luhrmann, R.; Sekine, M. Tetrahedron Lett. 2001, 42, 8853–8856; Gryaznov, S. M.; Letsinger, R. L. Tetrahedron Lett. 1992, 33, 4127–4128.
- Meyer, A.; Morvan, F.; Vasseur, J. J. *Tetrahedron Lett.* 2004, 45, 3745–3748.

- Li, X.; Scott, G. K.; Baxter, A. D.; Taylor, R. J.; Vyle, J. S.; Cosstick, R. J. Chem. Soc., Perkin Trans. 1 1994, 2123– 2129.
- Nielsen, J.; Caruthers, M. H. J. Am. Chem. Soc. 1988, 110, 6275–6276.
- 10. Battaggia, S.; Vyle, J. S. Tetrahedron Lett. 2003, 44, 861-863.
- 11. Watanabe, Y.; Sofue, S.; Ozaki, S.; Hirata, M. Chem. Commun. 1996, 1815–1816.
- Marsh, A. J.; Williams, D. M.; Grasby, J. A. Org. Biomol. Chem. 2004, 2, 2103–2112; Cosstick R. Personal Communication, 2005.
- Caruthers, M. H.; Kierzek, R.; Tang, J. Y. Synthesis of Oligonucleotides Using the Phosphoramidite Method. In *Biophosphates and their Analogues—Synthesis, Structure, Metabolism and Activity*; Bruzik, K. S., Stec, W. J., Eds.; Elsevier: Amsterdam, 1987; pp 3–21.
- 14. Ohkubo, A.; Aoki, K.; Seio, K.; Sekine, M. Tetrahedron Lett. 2004, 45, 979–982.
- Kottysch, T.; Ahlborn, C.; Brotzel, F.; Richert, C. *Chem. Eur. J.* 2004, *10*, 4017–4028; Zatsepin, T. S.; Stetsenko, D. A.; Gait, M. J.; Oretskaya, T. S. *Tetrahedron Lett.* 2005, *46*, 3191–3195.
- D'Onofrio, J.; Montesarchio, D.; De Napoli, L.; Di Fabio, G. Org. Lett. 2005, 7, 4927–4930.