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Abstract—A novel phosphoramidite, N,N-diisopropylamino-2-cyanoethyl-9-anthracenemethyl phosphoramidite 1, was prepared
and coupled with the terminal 5 0-hydroxyl of support-bound T10 and the putative phosphite triester intermediate was subsequently
reacted with iodine in the presence of either water or a series of primary and secondary amines. The reactivity of 1 compared to a
previously reported benzyl phosphoramidite 2 was also investigated: oxidation of the product of coupling 2 with CPG-T10-5

0OH
under aqueous conditions resulted in greater than 30% of the benzyl moiety being retained. In contrast, essentially complete loss
of the 9-anthracenemethyl group was observed using 1 under the same conditions. Oligonucleotides modified with a terminal phos-
phate monoester, lipophilic, fluorescent or cationic groups were thus prepared.
� 2005 Elsevier Ltd. All rights reserved.
Oligonucleotide conjugates incorporating cell targeting/
delivery agents, reporter groups, capture tags or nucle-
ase resistant moieties at the 3 0- or 5 0-termini are cur-
rently widely prepared.1 The utility of such conjugates
can often be optimised using �programmable linkers�,
the properties of which respond to environmental
changes. This technology is well established for chemi-
cal- or light-cleavable linkers applied to affinity purifica-
tion.2 More recently, acid-cleavable linkers such as
phosphoramidates have been utilised for the in vivo
delivery of oligonucleotide–PEG conjugates.3 Within
5 h at the endosomal pH (4.7), complete cleavage of a
phosphoramidate linking an antisense oligonucleotide
and a PEG group was observed.

Internucleotide phosphoramidate linkages and also
mononucleoside phosphoramidate prodrugs have been
installed via a diverse range of solid-phase chemistries.4
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In contrast, few developments in the solid-phase prepa-
ration of oligonucleotides bearing terminal phospho-
ramidates have been reported following descriptions of
efficient solution-phase methods in the 1980s.5 Solid-
phase methods, which have been reported typically
involve reactions of phosphate monoesters, phosphoimi-
dazolides or H-phosphonates rather than phosphites.6

Vasseur and co-workers have recently described7 a
simple route to H-phosphonates using a 4-methoxy-
benzyl phosphoramidite first reported by Li et al.8 Using
a related ortho-methylbenzyl phosphoramidite, we
sought to exploit the reactivity of the corresponding
phosphite triester derivatives9 for the preparation of
Figure 1. Phosphoramidites utilised in this study.
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Scheme 1. Reagents and conditions: (i) 0.1 M 1 or 2 0.2 M 5-benzylthiotetrazole or 0.45 M tetrazole, MeCN; (ii) oxidation—see Table 1 for
conditions; (iii) deprotection via A: 40% MeNH2 (aq), 65 �C, 30 min (7a–f); or B: (a) 10 % (v/v) Et3N, 1:1 bistrimethylsilylacetamide/anhydrous
pyridine, rt, 10 min; (b) 30% NH3 (aq), rt, 30 min (7g).

�Compound 1a: dH (300.0 MHz, CD3CN) 1.15–1.25 (12H, m,
2 · (CH3)2CH), 2.45 (2H, 2 · t 3JHH 6.6 Hz, CH2CN), 3.65 (2H, m,
2 · CH), 3.72 (2H, m, OCH2CH2), 5.58–5.75 (2H, 2 · m, CH2OAr),
7.44–7.59 (4H, m, H2, H7, H3, H6), 8.01 (2H, s, H4, H5), 8.41 (2H, d
3JHH 8.7 Hz, H1, H8), 8.46 (1H, s, H10); dP-31 (121.5 MHz, CD3CN)
147.33; MS-ES, 409.1 (M+H), 431.1 (M+Na); mp 59.7–60.1 �C.
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phosphorothiolate-derived oligonucleotides.10 However,
the instability of the phosphoramidite and the inter-
mediate phosphite triesters led us to seek more stable
aryl methyl-derivatives for the preparation of terminal
oligonucleotide–phosphoramidate conjugates.

Phosphoramidite derivatives of 9-anthracenemethanol
(1: Fig. 1) or benzyl alcohol11 2 were prepared and iso-
lated without chromatography using the methodology
developed in this laboratory and since used by
others.10,12

Thus, a 0.1 M solution of either 9-anthracenylmethanol
or benzyl alcohol and Hünigs base (4.1 equiv) in
anhydrous DCM was stirred during addition of N,N-
diisopropylamino-2-cyanoethylchlorophosphoramidite
(1.2 equiv) and the reaction stirred at room temperature
for 30 min. Excess phosphitylating reagent was quen-
ched following addition of solid-supported benzyl alco-
hol and agitation for a further 30 min under ambient
conditions. Compounds 1 and 2 were isolated in good
yield (>80%) and high purity (>90%) following treat-
ment with activated basic alumina.� A solution of 2 in
acetonitrile (0.1 M) was found to be stable for over
1 month at room temperature in the presence of Mole-
cular TrapsTM. The same solution of 1 was used within
1 week of its preparation.

Coupling of 1 or 2 to the 5 0-hydroxyl of CPG-supported
T10 3 was performed under standard conditions (Scheme
1). The putative phosphite triester intermediates (4 or 5)
were subsequently oxidised under standard conditions
using 50 mM I2 in 8/1/1 THF/pyridine/H2O. We antici-
pated conversion to the corresponding cyanoethyl-pro-
tected phosphate diester 6a with complete loss of the
benzyl protecting group from 4 as has previously been
observed for the o-methylbenzyl moiety.13 However, fol-



Table 1. Coupling and directed-Arbuzov reactions performed using aryl methyl phosphoramidites 1 and 2

Phosphoramidite Oxidation conditions Deprotection
conditions

Product and
characterisation
MALDI-MS m/z

Calculated

C18-HPLC
rt/min
(gradient)a

Yield/%
(A260nm)

1 I2 (0.05 M)/THF/H2O/pyridine (8/1/1) A 7a 3065.38 20.59 (1) 98
3058.47

2 I2 (0.05 M)/THF/H2O/pyridine (8/1/1) A 7a (see above) 22.45 (1) <70
7b 3155.84 >30

3148.52

1/2 C12H25NH2 (0.5 M)/I2 (0.1 M)/THF (0.5 mL) A 7c 3226.37 41.17 (1) 86
3225.67

1/2 DansylNH(CH2)5NH2 (0.5 M)/I2 (0.1 M)/THF (0.5 mL) A 7d 3377.45 20.03 (2) 76
3375.63

1 (MMTrHNCH2CH2CH2)2N(CH2)2NH2 (0.5 M)/I2
(0.1 M)/THF (0.5 mL)

Detritylation
then A

7e 3185.79b 18.59 (1) 93
3186.61

1 H2N(CH2)8NH2 (0.5 M)/I2 (0.1 M)/DCM (0.5 mL) A 7f 3187.33 19.89 (1) 71
3184.62

1 O(CH2)2NH (0.5 M)/I2 (0.1 M)/THF (0.5 mL) B 7g 3136.38 21.52 (1) 83
3127.53

a HPLC; Monitoring at 260 nm. Column: RP-C18, 5 lm, 250 · 4.6 mm. Flow rate: 1 mL min�1. Buffer A: 0.1 M TEAA, 5% MeCN, pH 6.5; Buffer
B: 0.1 M TEAA, 65%MeCN, pH 7. Gradient 1: 0 min, 0% B; 5 min, 0% B; 35 min, 50% B; 38 min, 100% B; 43 min, 100% B; 50 min, 0% B; 55 min,
0% B. Gradient 2: 0 min, 25% B; 5 min, 25% B; 20 min, 45% B, 25 min, 25% B, 35 min, 25% B.

b Cyanoethylated material is also observed—observed 3231.46; calculated 3239.64.
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lowing deprotection in 40% aqueous methylamine, RP-
HPLC and MALDI-MS analysis of the products
showed only 70% loss of the benzyl group to 7a with
the benzyl-protected phosphate diester 7b being the only
other product (Table 1). In contrast, greater than 98%
loss of the anthracene-methyl function from 5 was
observed under the same conditions and the 50-phosphate
monoester was formed cleanly following deprotection.

Several phosphoramidate derivatives of primary and
secondary amines were also prepared using a standard
protocol: the synthesis cycle was interrupted immedi-
ately following the coupling step; the support washed
with anhydrous acetonitrile, and the phosphite triester
intermediates 4 or 5 treated with 100 mM I2 in the pres-
ence of 0.5 M amine. Reduced yields of the phospho-
ramidates were generally obtained using lower amine
concentrations or in the presence of DMF. Removal
of the 2-cyanoethyl moieties from decamers bearing ter-
minal phosphoramidates derived from primary amines
(6c–f) and their simultaneous cleavage from the sup-
port was effected using standard conditions. Attempted
deprotection of the 5 0-morpholidate-terminated oligo-
mer 6g using these conditions gave rise principally to
the phosphate monoester 7a. We therefore adapted the
procedure of Ohkubo et al.14 to effect initial decyano-
ethylation using a tertiary amine prior to removal from
the support.

Analysis of the crude products following deprotection
was performed using RP-HPLC. Characterisation was
either by MALDI-MS or by coinjection with standards.
In addition to the desired product, two major side-
products were observed: 7a and an oligonucleotide
conjugate, which we tentatively assign to the 9-anthrace-
nemethyl phosphate diester based upon its UV-absorp-
tion profile. Due to the large absorbance of the
anthracenyl moiety, the levels of the side-product are
over-estimated using absorbance at 260 nm.

In conclusion, we have prepared a novel phosphorami-
dite and demonstrated its utility for the rapid derivatisa-
tion of support-bound oligomers using standard
phosphoramidite methodology. Decathymidylates bear-
ing 5 0-phosphoramidate-linked lipophilic, fluorescent
and cationic moieties were thus prepared in a fashion
amenable to split-bead, parallel synthesis of nucleic acid
analogues. This will thereby directly complement meth-
odologies developed in the laboratories of Richert and
Gait for the solid-phase functionalisation of modified
bases or sugars.15 During the preparation of this manu-
script Fabio and co-workers described the preparation
of highly pure 5 0- and 3 0-labelled decanucleotides includ-
ing phosphoramidates on solid support via phosphate
triester methodology;16 we believe that the novel phos-
phoramidite methodology described here provides
access to a greater diversity of phosphate diester
analogues.
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